Искусственный интеллект
Отличие искусственного интеллекта от естественного
Интеллект можно определить как общую умственную способность к рассуждению, решению проблем и обучению
В силу своей общей природы интеллект интегрирует когнитивные функции, такие как восприятие, внимание, память, язык или планирование. естественный интеллект отличает осознанное отношение к миру
Мышление человека всегда эмоционально окрашено, и его нельзя отделить от телесности. Кроме того, человек — существо социальное, поэтому на мышление всегда влияет социум. ИИ не имеет отношения к эмоциональной сфере и социально не ориентирован.
Как сравнить человеческий и компьютерный интеллекты?
Сравнить мышление человека с искусственным интеллектом можно исходя из нескольких общих параметров организации мозга и машины. Деятельность компьютера, как и мозга, включает четыре этапа: кодирование, хранение, анализ данных и выдачу результата. Кроме того, мозг человека и ИИ могут самообучаться в зависимости от данных, полученных из окружающей среды. Также человеческий мозг и машинный интеллект решают проблемы (или задачи), используя определенные алгоритмы.
У компьютерных программ есть IQ?
Нет. Показатель IQ связан с развитием интеллекта человека в зависимости от возраста. ИИ в чем-то превышает некоторые человеческие способности, например может удерживать в памяти огромное количество цифр, но это не имеет отношения к IQ.
Что такое тест Тьюринга?
Алан Тьюринг разработал эмпирический тест, который показывает, способна ли программа уловить все нюансы поведения человека до такой степени, что человек не сможет определить, с кем именно он общается — с ИИ или с живым собеседником. Тьюринг предложил, чтобы сторонний наблюдатель оценивал разговор между человеком и машиной, которая отвечает на вопросы. Судья не видит, кто именно отвечает, но знает, что один из собеседников — ИИ. Разговор ограничен только текстовым каналом (компьютерная клавиатура и экран), поэтому результат не зависит от способности машины отображать слова как человеческую речь. В случае, если программе удается обмануть человека, считается, что она эффективно справилась с тестом.
Символьный подход
Символьный подход к ИИ — совокупность всех методов исследования искусственного интеллекта, основанных на высокоуровневых символических (читаемых человеком) представлениях о задачах, логике и поиске. Символьный подход широко применялся в исследованиях ИИ в 1950–80-х годах. Одной из популярных форм символьного подхода являются экспертные системы, использующие сочетание определенных правил производства. Производственные правила связывают символы в логические связи, которые подобны алгоритму If-Then. Экспертная система обрабатывает правила, чтобы сделать выводы и определить, какая дополнительная информация ей нужна, то есть какие вопросы задавать, используя удобочитаемые символы.
Логический подход
Термин «логический подход» предполагает апеллирование к логике, размышлениям, решению задач с помощью логических шагов. Логики еще в XIX веке разработали точные обозначения для всех видов объектов в мире и отношений между ними. К 1965 году существовали программы, которые могли решить любую логическую задачу (пик популярности данного подхода пришелся на конец 1950–70-х годов). Сторонники логического подхода в рамках логического искусственного интеллекта надеялись выстроить на таких программах (в частности, записанных на языке Prolog) интеллектуальные системы. Однако у такого подхода два ограничения. Во-первых, нелегко взять неформальное знание и изложить его в формальных терминах, которые требуются для обработки ИИ. Во-вторых, есть большая разница между решением проблемы в теории и ее решением на практике. Даже проблемы с несколькими сотнями фактов могут исчерпать вычислительные ресурсы любого компьютера, если у него нет каких-либо указаний относительно того, какие рассуждения надо использовать в первую очередь.
Агентно-ориентированный подход
Агент — это то, что действует (от лат. agere, «делать»). Конечно, все компьютерные программы что-то делают, но ожидается, что компьютерные агенты будут делать больше: работать автономно, воспринимать сигналы окружающей среды (с помощью специальных датчиков), адаптироваться к изменениям, создавать цели и выполнять их. Рациональный агент — это тот, кто действует так, чтобы достичь наилучшего ожидаемого результата.
Гибридный подход
Предполагается, что этот подход, который стал популярным в конце 80-х, работает наиболее эффективно, так как представляет собой сочетание символьных и нейронных моделей. Гибридный подход увеличивает когнитивные и вычислительные возможности машины.
Перспектива развития искусственного интеллекта
Компьютеры теперь могут делать многое из того, что раньше могли делать только люди: играть в шахматы, распознавать буквы алфавита, проверять орфографию, грамматику, распознавать лица, диктовать, говорить, выигрывать игровые шоу и многое другое. Но скептики упорствуют. Как только удается автоматизировать очередную человеческую способность, скептики говорят, что это лишь еще одна компьютерная программа, а не пример самообучающегося ИИ. Технологии ИИ только находят широкое применение и имеют огромный потенциал роста во всех сферах. Со временем человечество будет создавать все более мощные компьютеры, которые будут все более совершенствоваться в развитии ИИ.
Является ли целью ИИ поместить человеческий разум в компьютер?
Существует только приблизительное понимание того, как работает человеческий мозг. Пока далеко не все свойства разума возможно имитировать с помощью ИИ.
Сможет ли ИИ достичь человеческого уровня интеллекта?
Ученые стремятся к тому, чтобы ИИ мог решать еще больше разнообразных задач. Но о достижении уровня человеческого интеллекта говорить преждевременно, так как мышление не сводится только к одним алгоритмам.
Когда искусственный интеллект сможет достичь уровня человеческого мышления?
На данном этапе накопления и анализа информации, который сейчас достигнут человечеством, ИИ далек от человеческого мышления. Однако в будущем могут возникнуть прорывные идеи, которые повлияют на резкий скачок в развитии ИИ.
Может ли компьютер стать интеллектуальной машиной?
Часть любой сложной машины — это компьютерная система, и тут возможно говорить только об интеллектуальных компьютерных системах. Сам компьютер не обладает интеллектом.
Есть ли связь между скоростью и развитием интеллекта у компьютеров?
Нет, скорость отвечает только за некоторые свойства интеллекта. Самой по себе скорости обработки и анализа информации недостаточно, чтобы появился интеллект.
Как связаны с ИИ теория вычислимости и вычислительная сложность?
Теория вычислительной сложности фокусируется на классификации вычислительных задач в соответствии с присущей им сложностью и связывании этих классов друг с другом. Вычислительная задача — это задача, решаемая компьютером. Задача вычисления разрешима механическим применением математических шагов, таких как алгоритм.
Пределы глубокого обучения и нейросетей
Несмотря на все свои преимущества, глубокое обучение и нейросети также имеют и некоторые недостатки.
- Зависимость от данных: в целом, алгоритмы глубокого обучения требуют огромного количества обучающих данных для точного выполнения своих задач. К сожалению, для решения многих проблем недостаточно качественных данных обучения для создания рабочих моделей.
- Непредсказуемость: нейронные сети развиваются каким-то странным путем. Иногда все идет как задумано. А иногда (даже если нейросеть хорошо справляется со своей задачей), даже создатели изо всех сил пытаются понять, как же алгоритмы работают. Отсутствие предсказуемости делает чрезвычайно трудным устранение и исправление ошибок в алгоритмах работы нейросетей.
- Алгоритмическое смещение: алгоритмы глубокого обучения так же хороши, как и данные, на которых они обучаются. Проблема заключается в том, что обучающие данные часто содержат скрытые или явные ошибки или недоработки, и алгоритмы получают их «в наследство». Например, алгоритм распознавания лиц, обученный в основном на фотографиях белых людей, будет работать менее точно на людях с другим цветом кожи.
- Отсутствие обобщения: алгоритмы глубокого обучения хороши для выполнения целенаправленных задач, но плохо обобщают свои знания. В отличие от людей, модель глубокого обучения, обученная играть в StarCraft, не сможет играть в другую подобную игру: скажем, в WarCraft. Кроме того, глубокое обучение плохо справляется с обработкой данных, которые отклоняются от его учебных примеров.
Биржевая торговля
Группа исследователей из университета Эрлангена-Нюрнберга в Германии разработала ряд алгоритмов, использующих архивные данные рынков для тиражирования инвестиций в режиме реального времени. Одна из моделей обеспечила 73% возврата инвестиций ежегодно с 1992 по 2015 год, что сопоставимо с реальной рыночной доходностью на уровне в 9% в год.
В 2004 году Goldman Sachs запустил торговую платформу Kensho на базе искусственного интеллекта. На криптовалютных рынках также появляются системы на базе ИИ для торговли на биржах – Mirocana и т.д. Они лучше живых трейдеров, так как лишены эмоций и опираются на чёткий анализ и жесткие правила.
Заменит ли ИИ нас с вами
Искусственный интеллект превосходит человека в решении задач, которые связаны с анализом больших данных, чёткой логикой и необходимостью запоминать большие объёмы информации. Но в творческих конкурсах человек пока выигрывает у ИИ.
Возможно, потому, что восприятие творчества субъективно. А в шахматной партии или биржевой торговле можно двигаться к конкретным результатам.
Безусловно, ИИ меняет наш мир и находит всё новые применения. Наша задача – использовать его во благо, разрабатывать правила регулирования ИИ-систем и передавать системам опыт, накопленный за тысячелетия существования человечества.
iPhones.ru
Искусственный интеллект – технология, которую мы точно заберём с собой в будущее. Рассказываем, как он работает и какие крутые варианты применения нашел. Рубрика «Технологии» выходит каждую неделю при поддержке re:Store. Что представляет собой искусственный интеллект Искусственный интеллект (ИИ) – это технология создания умных программ и машин, которые могут решать творческие задачи и генерировать новую…
У компьютерных программ есть IQ?
Нет. IQ основан на темпах развития интеллекта у детей. Это отношение возраста, в котором ребенок обычно набирает определенный результат, к возрасту ребенка. Данная оценка подходящим образом распространяется и на взрослых людей. IQ хорошо коррелирует с различными показателями успеха или неудачи в жизни. Но создание компьютеров, которые могут набрать высокий балл в тестах IQ, будет слабо связано с их полезностью. Например, способность ребенка повторять длинную последовательность цифр хорошо коррелирует с другими интеллектуальными способностями. Она показывает, какое количество информации ребенок может запомнить за один раз. При этом удержание в памяти цифр является тривиальной задачей даже для самых примитивных компьютеров.
Как сравнить человеческий и компьютерный интеллекты?
Артур Р. Дженсен, ведущий исследователь в области человеческого интеллекта, в качестве «эвристической гипотезы» утверждает, что обычные люди имеют одни и те же механизмы интеллекта и интеллектуальные различия связаны с «количественными биохимическими и физиологическими условиями». К ним относятся скорость мышления, краткосрочную память и способность формировать точные и извлекаемые долгосрочные воспоминания.
Независимо от того, правильна ли точка зрения Дженсена в отношении человеческого интеллекта, ситуация в ИИ на сегодняшний день является противоположной.
Компьютерные программы имеют большой запас скорости и памяти, но их способности соответствуют интеллектуальным механизмам, которые разработчики программ хорошо понимают и могут вложить в них. Некоторые способности, которые дети обычно не развивают до подросткового возраста, внедряются. Другие, которыми владеют двухлетние дети, все еще отсутствуют. Дело еще более усугубляется тем фактом, что когнитивные науки до сих пор не могут точно определить, каковы человеческие способности. Скорее всего, организация интеллектуальных механизмов ИИ выгодно отличается от таковой у людей.
Когда человеку удается решить задачу быстрее, чем компьютеру, это говорит о том, что разработчикам не хватает понимания механизмов интеллекта, необходимых для эффективного выполнения данной задачи.
Имитация человека
Роботы, наделённые искусственным интеллектом, уже могут имитировать человеческую мимику. К примеру, Facebook AI lab разработала интеллектуального анимированного бота и обучила его на сотнях записей видеозвонков Skype.
Алгоритм отслеживал 68 ключевых точек на человеческом лице. Он понял, как люди кивают, моргают и воспроизводят другие движения при общении с собеседниками. Затем бот смог в режиме реального времени реагировать на информацию, которую ему сообщал собеседник, или его мимику.
Ещё один важный момент – наделение ИИ моралью. Чтобы обучить систему человеческим моральным нормам, исследователи из Массачусетского технологического института создали Moral Machine.
Сайт предлагал людям принять решение в непростых ситуациях: к примеру, ставил их на место водителя, который мог сбить либо трёх взрослых, либо двоих детей. Таким образом, Moral Machine обучили принимать непростые решения, которые нарушают закон робототехники о том, что робот не может принести вред человеку.
К чему приведёт имитация роботами с ИИ людей? Футуристы считают, что однажды они станут полноправными членами общества. К примеру, робот София гонконгской компании Hanson Robotics уже получила гражданство в Саудовской Аравии (при этом у обычных женщин в стране такого права нет!).
Когда колумнист «Нью-Йорк Таймс» Эндрю Росс спросил у Софии, обладают ли роботы разумом и самосознанием, та ответила вопросом на вопрос:
Кроме того, София заявила:
А ранее она признавалась, что ненавидит человечество и даже соглашалась уничтожить людей…
Похожее
-
Можно ли создать ИИ и не потерять над ним контроль?
Сэм Харрис
Стоит ли бояться сверхразумного искусственного интеллекта? Нейробиолог и философ Сэм Харрис считает, что очень даже стоит. По его мнению, мы стоим на пороге создания сверхразумных машин, при этом не решив множество проблем, которые могут возникнуть при создании ИИ, который потенциально сможет обращаться с людьми так же, как те с муравьями. -
Мозг в пробирке
Михаил Бурцев
Почему за полвека усилий не удалось создать искусственный интеллект? И как киборги помогают понять работу мозга? Об этом рассказывает Михаил Бурцев, кандидат физико-математических наук, руководитель лаборатории нейронных систем и глубокого обучения МФТИ. -
Как смоделировать мозг?
Виталий Дунин-Барковский
Как смоделировать мозг? Постижим ли человеческий мозг? Как алгоритмизировать сознание? И можно ли скопировать его на неорганический носитель? Ответы на эти вопросы помогает найти Виталий Дунин-Барковский, доктор физико-математических наук, профессор, заведующий отделом нейроинформатики Центра оптико-нейронных технологий НИИСИ РАН. -
Нужна ли роботу интуиция? Компьютерное моделирование психических процессов
Иван Иванчей
Когнитивная психология с самого начала своей истории описывала человека как вычислительную машину. Иван расскажет о ключевых моментах развития этого пути исследования человека, к чему он привёл на сегодняшний день и как учёные моделируют такие таинственные и, как кажется, присущие только человеку процессы, как интуиция, предвидение, инсайт и уверенность. -
Нейрокомпьютер, или аналоговый ренессанс
Горбань А. Н.
Игрушка ли нейрокомпьютер? В чем истинные преимущества нейрокомпьютеров? В каких областях преимущества нейронных систем наиболее очевидны? Избыточность — это хорошо или плохо? Какие задачи под силу только нейрокомпьютеру? -
Нейронные сети: настоящее и будущее
Евгений Путин
Евгений Путин, аспирант кафедры «Компьютерные Технологии» университета ИТМО. В рамках диссертации Евгений исследует проблемы интеграции концепции выбора признаков в математический аппарат искусственных нейронных сетей. Евгений расскажет о том, как устроены нейронные сети, что они могут делать сейчас, на что будут способны в недалеком будущем и ждать ли прихода Скайнета. -
IBM провела симуляцию нейрокомпьютера, сопоставимого с мозгом человека
Впервые был достигнут масштаб, соответствующий человеческому мозгу — 530 миллиардов нейронов и 137 триллионов синапсов. Симуляция происходила в 1542 раза медленнее реального времени. В ней были задействованы все 1 572 864 ядер и полтора петабайта памяти. -
Компьютерный мозг приближается к человеческому
У архитектуры фон Неймана есть один известный минус, который состоит в том, что и данные, и программы-инструкции, описывающие то, что нужно сделать с данными, находятся в одной и той же памяти. И процессор либо собирает данные из памяти, либо манипулирует ими в соответствии с командой. Одновременно подгружать новые данные и обрабатывать их в рамках такой схемы нельзя. Из-за этого современным компьютерам, сколь бы быстры они ни были, трудно выполнять некоторые задачи, например, связанные с распознаванием изображений. Пытаясь выйти за пределы архитектуры фон Неймана, специалисты по «электронным мозгам» обратились к мозгам настоящим.
-
ИИ и машинное обучение: итоги 2017 года
Сергей МарковНа лекции мы обсудим вторую весну искусственного интеллекта в цифрах и фактах, ключевые работы в области искусственного интеллекта и машинного обучения в 2017 году. Поговорим о распознавании изображений, речи, обработке естественного языка и о других направлениях исследований; обсудим новые модели и оборудование 2017 года. Также поговорим о применении ИИ и машинного обучения в бизнесе, медицине и науке, а также обсудим, чего мы ждем от искусственного интеллекта и машинного обучения в 2018 году.
-
Как научить робота сочувствовать?
Сергей Марков
Гамбургский счет
В 1950 году английский ученый Алан Тьюринг в статье «Вычислительные машины и разум» задался вопросом: «Может ли машина понимать человека?». Так родился знаменитый тест Тьюринга, в котором компьютер пытался обмануть людей. Но как компьютер понимает человека и чего он пока понять не может? Об этом по гамбургскому счету мы решили спросить специалиста в области машинного обучения, директора информационных технологий компании «Activebusinesscollection» Сергея Маркова.
Далее >>>
Написание музыки
В августе искусственный интеллект Amper сочинил, спродюсировал и исполнил музыку для альбома «I AM AI» (англ. я — искусственный интеллект) совместно с певицей Тэрин Саузерн.
Amper разработала команда профессиональных музыкантов и технологических экспертов. Они отмечают, что ИИ призван помочь людям продвинуть вперед творческий процесс.
Amper самостоятельно создала аккордовые структуры и инструментал в треке «Break Free». Люди лишь незначительно поправили стиль и общую ритмику.
Ещё один пример – музыкальный альбом в духе «Гражданской обороны», тексты для которого писал ИИ. Эксперимент провели сотрудники «Яндекса» Иван Ямщиков и Алексей Тихонов. Альбом 404 группы «Нейронная оборона» выложили в сеть. Получилось в духе Летова:
Затем программисты пошли дальше и заставили ИИ писать стихи в духе Курта Кобейна. Для четырёх лучших текстов музыкант Роб Кэррол написал музыку, и треки объединили в альбом Neurona. На одну песню даже сняли клип – правда, уже без участия ИИ:
Перспективы развития искусственного интеллекта
Научные исследования ИИ ведутся более полувека, но до сих пор далеко не все понимают суть технологии. В фантастических романах и фильмах писатели и режиссеры изображают, каким опасным может быть искусственный интеллект. И у многих представление об искусственном разуме формируется именно таким.
Ответим рационально на вопросы, связанные с далекими перспективами развития ИИ.
Цель ИИ — поместить человеческий разум в компьютер?
Нет, это не так. Даже теоретически подобная ситуация не так уж невероятна. Искусственные нейросети создаются по образу человеческого мозга, хотя и в очень упрощенном виде. Может быть, однажды станет возможно просканировать все разделы мозга живого человека, составить «карту» его нейронов и синаптических связей и воспроизвести ее копию в компьютере. От такой скопированной нейросети можно ожидать не только разумного поведения — она буквально будет двойником человека, сможет осознавать себя, принимать решения и совершать поступки, как он. Скопируются даже воспоминания. Теоретически, можно будет поместить такую нейросеть в искусственное тело (в робота), и тогда человек — копия его сознания — сможет жить практически вечно.
На практике осуществить такой перенос будет невероятно сложно: нет технологий, которые позволили бы «прочитать» живой мозг и создать его «карту». И мы пока очень далеки от создания искусственной нейросети, которая была бы столь же мощной, как мозг.
ИИ стремится достичь человеческого уровня интеллекта?
Цель ИИ — помогать людям и брать на себя сложные или рутинные задачи. Для этого ему вовсе не обязательно поддерживать беседы на философские темы или сочинять поэмы.
Тем не менее, если искусственный интеллект однажды сможет достичь уровня человеческого мышления, это будет важной вехой для цивилизации. Мы получим дельного и умного помощника — и сможем по праву гордиться тем, что это творение наших рук
Когда искусственный интеллект достигнет человеческого уровня?
Мы успешно создаем сравнительно небольшие нейросети, способные распознать голос или обработать изображение. Никакой ИИ пока не обладает такой же пластичностью, как наш мозг.
Человек может сегодня заниматься музыкой, а завтра взяться за программирование на C++ — благодаря невероятной сложности мозга. В нем 86 миллиардов нейронов и бесчисленное количество синаптических связей между ними.
Искусственным нейросетям пока далеко до этих показателей: у них от нескольких тысяч до миллионов нейронов. Есть технические ограничения на размеры нейросетей: даже суперкомпьютеры не «потянут» нейросеть, сопоставимую по масштабам с человеческим мозгом. Не говоря о том, что ее обучение будет нетривиальной задачей.
Скорость компьютеров позволяет им обладать интеллектом?
«Мощность» интеллекта связана не со скоростью вычислений, а со сложностью нейронной сети. Человеческий мозг пока превосходит по мощности любую искусственную нейросеть, несмотря на то что скорость процессов в нем существенно ниже, чем в компьютерах.
Искусственные нейронные сети состоят из отдельных нейронов, которые группируются в слои. Два внешних слоя служат «входом», на который подается исходная информация, и «выходом», с которого считывается результат. Между ними могут располагаться от одного до нескольких десятков, а то и сотен, промежуточных слоев из нейронов. Причем каждый нейрон в слое соединен с множеством других в предыдущем и следующем слоях.
Чем сложнее устроена сеть, чем больше в ней слоев и нейронов, тем более масштабные и серьезные задачи она может выполнять.
Может ли нейросеть развиваться естественным путем?
Разберемся, вероятно ли, что ИИ сможет получать опыт и обучаться естественно, как ребенок. Человеческий разум формируется под воздействием множества факторов. Мы получаем информацию о внешнем мире благодаря органам восприятия — наблюдая, осязая, пробуя на вкус. Взаимодействуя с окружающей средой, получаем жизненный опыт, знания о свойствах мира, социальные навыки. Наш мозг постоянно совершенствуется и физически меняется, наращивая новые синаптические связи и «прокачивая» существующие.
Если мы сумеем создать нейронную сеть, достаточно сложную, чтобы она могла развиваться подобным образом, и снабдим ее «органами чувств» — видеокамерой, микрофоном и подобным, — возможно, спустя время она сможет приобрести «жизненный опыт». Но это дело далекого будущего.
IQ
Умственный интеллект человека, IQ (intelligence quotient) — это совокупность накопленных знаний, умение их правильно применять, а также широта кругозора, умение находить логические решения. Все тесты, направленные на определение коэффициента интеллекта, сопоставляют его с возрастом человека, поскольку интеллект постоянно развивается. Развитие умственных способностей напрямую зависит от когнитивных функций головного мозга — внимания, памяти, мышления, восприятия. Кроме того, человеку присущ определенный уровень эмоционального интеллекта — это умение определять подтексты, скрытые смыслы, манипуляции со стороны собеседника благодаря считыванию его эмоций, мимики, жестов, позы. Интеллект человека развивается в социуме, когда мы взаимодействуем с другими людьми, обмениваемся опытом, перенимаем культурные традиции.
Четвертая революция
Как бы мы ни относились к искусственному интеллекту, придется принять тот факт, что он уже существует. Отказаться от него — значит сделать шаг назад в развитии. Ведь ИИ — это важная часть нашего прогресса. Многие ученые связывают с искусственными нейросетями начало четвертой промышленной революции и заявляют о том, что грядет новая эпоха — когда рядом с нами появится рукотворный разум, всегда готовый прийти на помощь.
Все новое пугает и вызывает недоверие — это нормальная человеческая реакция, и многие люди с опаской относятся к ИИ. Про ужасы, которые принесет нам искусственный разум, не говорил разве что ленивый фантаст. Но подобное в свое время сочиняли о каждом технологическом новшестве. Люди боялись паровозов, потому что они «распугают коров, отравят птиц дымом, а при скорости свыше 15 миль в час пассажиров разорвет на части». Вероятно, потомки тоже будут посмеиваться над нашими страхами, о которых узнают из фильмов и книг XX и XXI веков.
Для чего используется глубокое обучение и нейросети
Есть несколько областей, где эти две технологии помогли достичь заметного прогресса. Более того, некоторые из них мы ежедневно используем в нашей жизни и даже не задумываемся, что за ними стоит.
- Компьютерное зрение — это способность программного обеспечения понимать содержание изображений и видео. Это одна из областей, где глубокое обучение сделало большой прогресс. Например, алгоритмы обработки изображений глубокого обучения могут обнаруживать различные типы рака, заболеваний легких, сердца и так далее. И делать это быстрее и эффективнее врачей. Но глубокое обучение также укоренилось и во многих приложениях, которые вы используете каждый день. Apple Face ID и Google Photos используют глубокое обучение для распознавания лица и улучшения качества снимков. Facebook использует глубокое обучение, чтобы автоматически отмечать людей на загружаемых фотографиях и так далее. Компьютерное зрение также помогает компаниям автоматически идентифицировать и блокировать сомнительный контент, такой как насилие и нагота. И, наконец, глубокое обучение играет очень важную роль в обеспечении возможности самостоятельного вождения автомобилей, чтобы они могли понимать, что их окружает.
- Распознавание голоса и речи. Когда вы произносите команду для вашего Google Ассистента, алгоритмы глубокого обучения преобразуют ваш голос в текстовые команды. Несколько онлайн-приложений используют глубокое обучение для транскрибирования аудио- и видеофайлов. Даже когда вы «шазамите» песню, в дело вступают алгоритмы нейросетей и глубокого машинного обучения.
- Поиск в интернете: даже если вы ищите что-то в поисковике, для того, чтобы ваш запрос был обработан более четко и результаты выдачи были максимально правильными, компании начали подключать алгоритмы нейросетей к своим поисковым машинам. Так, производительность поисковика Google выросла в несколько раз после того, как система перешла на глубокое машинное обучение и нейросети.
Медицина
Искусственный интеллект широко используется для поддержки принятия решений в медицине. Но как вам такой пример: китайский интеллектуальный робот Xiaoyi («Сяо И») впервые сдал экзамен на врача и получил лицензию на врачебную деятельность.
Разработка компании iFlytek находит и анализирует информацию о пациенте. К работе он приступит в марте. Предполагается, что Xiaoyi будет ассистировать врачам, чтобы повысить качество их работы. Робот сосредоточится на противоопухолевой терапии, а также на обучении врачей общей практики, которых в сельских районах Китая очень мало.
Ещё одно интересное решение – Wave Clinical Platform от ExcelMedical. Система следит за жизненными показателями пациента и предупреждает врачей за шесть часов до его возможной скоропостижной смерти. Платформа системно анализирует информацию и рассчитывает риски неблагоприятного исхода.
В рамках тестов в медицинском центре Питтсбургского университета система предотвратила шесть смертей тяжелобольных пациентов. Человек на такое просто не способен, потому что не придаст значение небольшому изменению показателей и не найдёт связь между ними.
Система DeepFaceLIFT, разработанная учёными Массачусетского технологического института, способна распознавать уровень боли по микровыражениям лица. Она решает очень сложную задачу, так как каждый человек выражает боль по-разному. DeepFaceLIFT позволит понять, кому действительно нужны обезболивающие, а кто страдает зависимостью от наркотических препаратов.
Система для анализа речи и поиска признаков психических заболеваний – разработка IBM. Специалисты отдела по вычислительной психиатрии и нейровизуализации создали интеллектуальную систему, которая может предсказать развитие психоза по речи пациента.
Пациентам предлагалось просто рассказать о себе. Система могла определить, что речь человека стала беднее, он перескакивает с одной идеи на другую и т.п. Это характерные признаки психоза.
После улучшения системы пациентам предложили пересказать ей только что прочитанную историю. На этих примерах искусственный интеллект в 83% случаев ставил правильный диагноз. Это объективно выше, чем у врачей, даже с солидным опытом.