Вселенная десяти измерений: как представить дополнительные измерения
Внутри вселенского пузыря
Однако нам мало понять сам масштаб
Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровым диаметр
Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?
Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.
Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.
Уменьшая масштабы
В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.
Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в его центр. На краю Вселенной всё также будет мерцать реликтовое излучение.
Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.
Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.
Множество Солнц
Вега, снимок ESO
Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.
Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс α Лиры. Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.
Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во Вселенной.
Последствия Большого взрыва
Во время самого раннего устройства Вселенной был период ускоренного расширения, называемый инфляцией. Первоначально она объясняла, почему сфера Хаббла почти однородна по температуре. Однако инфляция также предсказала спектр флуктуаций температуры вокруг этого равновесия, который позднее был подтвержден несколькими космическими аппаратами.
Хотя точные детали теории все еще горячо обсуждаются, инфляция широко принимается физиками. Однако следствие этой теории состоит в том, что должны быть другие объекты во Вселенной, которые все еще ускоряются. Из-за квантовых флуктуаций пространства-времени некоторые ее части никогда не достигнут конечного состояния. Это означает, что пространство будет вечно расширяться.
Этот механизм генерирует бесконечное количество Вселенных. Комбинируя этот сценарий с теорией струн, есть вероятность, что каждая из них обладает другой компактификацией дополнительных размеров и, следовательно, имеет разные физические законы Вселенной.
Согласно учению Мультиверс, предсказанному теорией струн и инфляцией, все Вселенные живут в одном и том же физическом пространстве и могут пересекаться. Они неизбежно должны сталкиваться, оставляя следы в космическом небе. Их характер имеет широкий спектр — от холодных или горячих точек на космическом микроволновом фоне до аномальных пустот в распределение галактик.
Поскольку столкновение с другими Вселенными должно происходить в определенном направлении, ожидается, что любые вмешательства нарушают однородность.
Некоторые ученые ищут их через аномалии в космическом микроволновом фоне, послесвечении Большого Взрыва. Другие в гравитационных волнах, которые рябят в пространстве-времени по мере прохождения массивных объектов. Эти волны могут непосредственно доказывать существование инфляции, которая в конечном итоге усиливает поддержку теории Мультивселенной.
Старые звездные скопления
Млечный Путь насчитывает более 160-ти так называемых , число звезд в которых может колебаться от тысяч до миллионов. При этом все эти светила, связаны гравитационной силой, и вероятнее всего образовались из одного газового облака. Отсюда следует, что большая часть звезд таких скоплений зародилась практически в одно время. В силу своего строения и размеров каждая звезда пошла своим эволюционным путем, а некоторые уже находятся на стадии того же белого карлика. Высчитывая возраст каждой астрономической единицы рассматриваемого скопления, можно с большой точностью определить возраст самого шарообразного скопления.
При помощи того же телескопа «Хаббл» астрономы смогли проанализировать возраст 41 шарообразного звездного скопления Млечного Пути. В результате было выявлено, что все скопления нашей галактики не младше 10 млрд лет, а наиболее старое (M4) имеет возраст 12,7 ± 0,7 миллиардов лет. Поэтому, учитывая некоторое время до формирования звезд, нижней границей возраста Вселенной стало число 13 млрд лет.
Старейшее звездное скопление Млечного пути — Мессье 4 (M4)
Множество Млечных Путей
Млечный путь
Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.
Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью цефеид. Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.
Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.
В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами (войдами) и составляют крупномасштабную структуру, известной на данный момент, Вселенной.
Что происходит в других измерениях
Несмотря на всевозможные попытки фантастов рассказать о том, сколько измерений существует и что в них происходит, реальность оказывается несколько прозаичнее. Человек не воспринимает другие измерения. Известно, что, оказавшись в пятом измерении, человек бы видел мир, который несколько отличается от его привычного. В шестом была бы видна плоскость других миров, которые начинались бы точно так же, как текущий мир. Если бы человек был способен освоить его, он бы сумел переноситься в прошлое и в будущее. Включая и альтернативное будущее.
Седьмое измерение открыло бы путь к другим мирам, начинавшимся с других условий. В предыдущих начало было бы всегда одним, а здесь оно бы было альтернативным.
В восьмом измерении бы обнаружились все возможные истории, у них бы было бесконечное число ответвлений. Начало у каждой разное. Девятое измерение позволило бы сравнить все истории миров с разными законами физики и условиями. В десятом человек бы оказался у точки, где оказалось охваченным все мыслимое. Теория струн объясняет наличие этих 6 измерений.
Если читать научные труды, объясняющие, сколько измерений существует, рано или поздно исследователь наткнется на понятие «брана». Это предмет, точечная частица в более высоких измерениях. Браны двигаются в пространстве и времени. У них есть масса, может иметься и свой заряд.
Вам будет интересно:Землеустройство и кадастры — специальность: что это такое? Государственный университет по землеустройству
Многие ученые полагают, что возможно применить телескоп для обнаружения света из ранней Вселенной, который существовал много миллиардов лет назад. Тогда станет понятным, как дополнительные измерения повлияли на Вселенную.
Если теория струн однажды будет доказана, весь мир признает, что всего существует 10, а может, и больше измерений. Но неизвестно, станет ли когда-нибудь возможным визуально представить высокие измерения.
Стационарная Вселенная
Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.
Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.
Большая часть Вселенной куда-то исчезла
В настоящее время темная материя — не более чем очень мощная гипотеза среди космологов и астрономов. Ее присутствие объясняется тем, что мы должны учитывать большую часть массы, которой во Вселенной просто нет. Ее не хватает. Официальная точка зрения физики — 26,8% массы Вселенной просто отсутствует, ее нет, либо она не здесь.
Это не значит, что ее нет вообще, потому что должно быть что-то. Существует определенное несоответствие между массой больших астрономических объектов, которая определяется их гравитационными эффектами, и массой, которой должна обладать вся наблюдаемая материя. В лучшем случае темную материю можно рассматривать как вещество, которое не освещается светом. Она не излучает и не поглощает свет либо другое электромагнитное излучение. В худшем случае темной материи не существует вообще, но тогда придется поискать другое объяснение отсутствующей массе Вселенной.
Почему же гипотеза темной материи кажется такой мощной? Почему мы не можем просто написать «несоответствие между материей и массой» и забыть? Дело в том, что эта неопределенная материя оказывает очень мощное влияние на орбитальные скорости звезд в Млечном Пути и несет ответственность за «недостающую массу» галактик в скоплениях (как рассчитали астрономы Ян Оорт и Фриц Цвикки).
С какой стороны ни взглянуть, поведение атомов и невидимой Вселенной остаются серьезными загадками.
Теория струн
Это самая перспективная возможность объединить квантовую механику и гравитацию. Это трудно, потому что сила тяготения так же неописуема в небольших масштабах, как и атомы и субатомные частицы в рамках квантовой механики.
Но теория струн, в которой говорится, что все фундаментальные частицы состоят из мономерных элементов, описывает сразу все известные силы природы. К ним относят гравитацию, электромагнетизм и ядерные силы.
Однако для математической теории струн требуется не менее десяти физических измерений. Мы можем наблюдать только четыре измерения: высоту, ширину, глубину и время. Поэтому дополнительные измерения от нас скрыты.
Чтобы иметь возможность использовать теорию для объяснения физических явлений, эти дополнительные исследования «уплотнены» и слишком малы в небольших масштабах.
Проблема или особенность теории струн заключается в том, что существует много способов произвести компактификацию. Каждая из них приводит к созданию Вселенной с различными физическими законами, такими как отличные массы электронов и константы силы тяжести. Однако есть также серьезные возражения против методологии компактификации. Поэтому проблема не совсем решена.
Но возникает очевидный вопрос: в какой из этих возможностей мы живем? Теория струн не обеспечивает механизм определения этого. Она делает ее бесполезной, поскольку не представляется возможным ее досконально протестировать. Но исследование края Вселенной превратило эту ошибку в особенность.
Черная дыра
Теория, предложенная физиком Ли Смолином, предполагает, что каждый подобный космический объект в устройстве Метагалактики вызывает образование нового. Стоит только представить сколько черных дыр во Вселенной. Внутри каждой действуют физические законы, отличные от тех, что были у предшественника. Подобная гипотеза была впервые изложена в 1992 году в книге «Жизнь Космоса».
Звезды во всем мире, которые попадают в черные дыры, сжимаются до невероятно экстремальной плотности. В таких условиях это пространство взрывается и расширяется до собственной новой Вселенной, отличной от оригинала. Точка, где время останавливается внутри черной дыры, — это начало Большого взрыва новой Метагалактики.
Экстремальные условия внутри разрушенной черной дыры приводят к небольшим случайным изменениям основных физических сил и параметров в дочерней Вселенной. У каждого из них есть отличные от родительской характеристики и показатели.
Существование звезд является предпосылкой для формирования жизни. Это связано с тем, что углерод и другие сложные молекулы, обеспечивающие жизнь, создаются именно в них. Поэтому для формирования существ и Вселенной нужны одни и те же условия.
Критика космического естественного отбора как научной гипотезы заключается в отсутствии прямых доказательств на данном этапе. Но следует иметь в виду, что с точки зрения убеждений он не хуже, чем предлагаемые научные альтернативы. Нет подтверждений того, что находится за пределами Вселенной, будь это Мультивселенная, теория струн или циклическое пространство.
Граница безграничного
Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?
Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то».
Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.
Современный взгляд
Впервые всерьез задумался о том, что четвертое измерение – это время, Эйнштейн. Выяснилось, что во Вселенной не существует единого времени. Дело не в том, что оно свое в Токио, а в Москве – другое, а в том, что на Луне часы пойдут совершенно иначе, нежели на Земле. Оно относительно. Время сильно зависит от того, с какой скоростью перемещается предмет. Чем он быстрее, тем медленнее будет идти время. По этой причине часы на Луне всегда отстают. Пространство тесно связано со временем.
Есть теория Сасло, согласно которой Вселенная некогда, до такого масштабного расширения, являлась двумерной. Она основывается на предположении о том, что остальные измерения в тот момент были неразличимыми. Ученые считают, что существует некий квант пространства, меньше которого нет. И вполне вероятно, что остальные измерения попросту находились в настолько свернутом положении, что нельзя было выделить их. Впоследствии они начали раскрываться.
В рамках текущей Вселенной очевидно, что 4 измерений недостаточно для описания всего, что наблюдается вокруг. Примечательно, что простых законов Ньютона хватает, чтобы объяснить простейшие явления на Земле. В то время как при расчетах, используемых для космоса, ученые прибегают к теории Эйнштейна и четырехмерной математике. Но даже 4 измерений стало не хватать. На данный момент открыты далеко не все движущие миром законы и силы. Как правило, человек видит очень малую часть Вселенной.
Например, в ходе расчетов ученые сталкиваются со следующими вопросами. Они определяют массу звезд, которую видят точно, с газом между звездами, планетами. При суммировании этой массы получается определенное число. Но если подставить его в формулу вращения, окажется, что края мира двигаются гораздо медленнее, чем они двигаются на самом деле. Массы должно быть в 10 раз больше. Таким образом, ученые видят лишь одну массу, а еще девять не нашли. Это темная материя. К тому же известно, что Вселенная расширяется. А благодаря какой энергии – непонятно.
Важнейшей проблемой исследования космоса и других измерений является стремление человека перенести законы, которые работают на Земле, во внешнюю среду, и в итоге появляется некая темная материя. То есть из частности человек старается вывести общую картину.
По такой же схеме были введены маленькие дополнительные измерения, которые есть, а человек их не видит. С ранних лет жизни мозг человека весьма сильно ограничивается восприятием лишь трех измерений.
Хотя в фантастических произведениях часто описывается, как однажды станет возможным благодаря изучению последующих измерений раздвигать пространство вокруг, входить в закрытые помещения, в реальности, как отмечают ученые, это невозможно. В то же время они не исключают возможность того, что его удастся «гнуть». Например, благодаря неким искривлениям в пространстве и времени человек будет перемещаться из одной точки в другую.
Сейчас самым кратким путем считается прямая. Но, сложив лист и проткнув его насквозь, в конечной точке возможно оказаться мгновенно. Вероятно, это однажды люди будут проделывать с пространством и временем. По сути, трехмерный мир и представляет собой аналогичный плоский лист, который вполне «протыкается». Ученые продолжают активно двигаться в этом направлении. Так, люди не так давно научились обнаруживать планеты в других солнечных системах. Хотя люди понимали, что звезды обладают планетами, но не могли их обнаружить.
Однако ум человека развился до момента, когда сумел воочию видеть планеты, расположенные так далеко, выяснять их состав, не оказываясь на их поверхности. На данный момент человеческий ум активно работает над открытием искажений времени и пространства, измерений.
Микроволновое излучение
Карта распределения реликтового излучения. Смотреть в полном размере.
30 июня 2001 года NASA запустила в космос аппарат под названием Wilkinson Microwave Anisotropy Probe (WNAP), задача которого изучать реликтовое излучение. При помощи результатов его наблюдений была построена новая карта (с разрешением в 35 раз больше, нежели предыдущая) распределения реликтового, микроволнового излучения. Анализируя эту карту, помимо насыщенной полосы в центре, излучаемой Млечным Путем, можно заметить распределение реликтового излучения за его пределами. Явно видимые неоднородности формируют пятнистую структуру, причем неравномерную. Подробное изучение этой структуры дает возможность точно оценить время, которое понадобилось для ее образования, вследствие Большого Взрыва. Оно составляет 13,7 ± 0,2 млрд лет.
При помощи описанных выше методов, ученые смогли достаточно точно определить возраст Вселенной, что несет первостепенное значение для космологии, а также для понимая нашего мироздания в целом.
Бесконечные пузыри
Говорить о чем-то за пределами сферы Хаббла не совсем верно, так как это по-прежнему имеет идентичное устройство Метагалактики. «Неизвестность» имеет те же физические законы Вселенной и константы. Есть версия, что Большой взрыв вызвал появление пузырей в структуре пространства.
Сразу после него, до момента начала инфляции Вселенной, возникла своего рода «космическая пена», существующая как скопление «пузырей». Один из объектов этого вещества внезапно расширился, со временем став Вселенной, известной сегодня.
Но что получилось из других пузырей? Александр Кашлинский — глава команды НАСА, организации, которая обнаружила «темную энергию», — заявил: «Если отдалиться на достаточно большое расстояние, то можно увидеть структуру, которая находится вне пузыря, за пределами Вселенной. Эти структуры должны вызвать движение».
Таким образом, «темная энергия» воспринимается как первое свидетельство существования другой Вселенной, или даже «Мультивселенной».
Каждый пузырь — это область, которая перестала растягиваться вместе с остальной частью пространства. Она сформировала свою собственную Вселенную со своими особыми законами.
В этом сценарии пространство бесконечно, и каждый пузырь также не имеет границ. Даже если можно нарушить рубеж одного из них, пространство между ними все еще расширяется. Со временем будет невозможно добраться до следующего пузыря. Такое явление до сих пор остается одной из величайших тайн космоса.
Теория 10 измерений
Эта теория провозглашает гораздо большее число измерений, чем известные человеку 3. По крайней мере, их имеется 10. Они оказывают влияние на человеческий мир, несмотря на то, что его обитатели их не видят, не воспринимают.
Пятое измерение – это и есть параллельный мир. Шестое является плоскостью, в которой присутствуют Вселенные, похожие на эту. Седьмое измерение является мирами, возникавшими в совершенно иных условиях, нежели известный человеку мир. В восьмом измерении хранится вся история миров. Девятое содержит миры, живущие по иным законам физики, нежели это измерение. Десятое же включает все перечисленные миры. Все их сознание не в состоянии вообразить.
Масштабы Вселенной
Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир! Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область облака Оорта – Луне, область границы воздействия Солнца – Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.
Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Она чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактическое пространства. В двадцати сантиметрах от неё расположиться такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.
Что происходит в других измерениях
Несмотря на всевозможные попытки фантастов рассказать о том, сколько измерений существует и что в них происходит, реальность оказывается несколько прозаичнее. Человек не воспринимает другие измерения. Известно, что, оказавшись в пятом измерении, человек бы видел мир, который несколько отличается от его привычного. В шестом была бы видна плоскость других миров, которые начинались бы точно так же, как текущий мир. Если бы человек был способен освоить его, он бы сумел переноситься в прошлое и в будущее. Включая и альтернативное будущее.
Седьмое измерение открыло бы путь к другим мирам, начинавшимся с других условий. В предыдущих начало было бы всегда одним, а здесь оно бы было альтернативным.
В восьмом измерении бы обнаружились все возможные истории, у них бы было бесконечное число ответвлений. Начало у каждой разное. Девятое измерение позволило бы сравнить все истории миров с разными законами физики и условиями. В десятом человек бы оказался у точки, где оказалось охваченным все мыслимое. Теория струн объясняет наличие этих 6 измерений.
Если читать научные труды, объясняющие, сколько измерений существует, рано или поздно исследователь наткнется на понятие «брана». Это предмет, точечная частица в более высоких измерениях. Браны двигаются в пространстве и времени. У них есть масса, может иметься и свой заряд.
Многие ученые полагают, что возможно применить телескоп для обнаружения света из ранней Вселенной, который существовал много миллиардов лет назад. Тогда станет понятным, как дополнительные измерения повлияли на Вселенную.
Если теория струн однажды будет доказана, весь мир признает, что всего существует 10, а может, и больше измерений. Но неизвестно, станет ли когда-нибудь возможным визуально представить высокие измерения.
Множество параллельных Вселенных
Эта идея кажется чем-то, что мало относится к современной теоретической физике. Но мысль о существовании Мультиверса уже давно считается научной возможностью, хотя все еще вызывает активные дискуссии и деструктивные споры среди физиков. Этот вариант полностью разрушает представление о том, сколько Вселенных в космосе.
Важно иметь в виду, что Мультиверс не теория, а скорее следствие современного понимания теоретической физики. Это отличие имеет решающее значение
Никто не махнул рукой и не сказал: «Пусть будет Мультивселенная!». Эта идея была получена из текущих учений, таких как квантовая механика и теория струн.
На поверхности гиперсферы
Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.
Будущее Вселенной
К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.
Тепло белых карликов
Как нам известно, белые карлики, конечный этап жизни большинства звезд, очень долго остывают. Определив основные характеристики такой звезды, можно рассчитать ее изначальную температуру, а также скорость, с которой она остывает. На основе этих данных уже относительно просто высчитывается возраст рассматриваемого белого карлика. Совершивший множество значительных открытий, телескоп «Хаббл» в 2002-м и 2007-м годах обнаружил самых холодных белых карликов. Возраст этих светил оказался 11,5-12 млрд лет. Если прибавить к этим значениям от полумиллиарда до миллиарда лет (возраст звезд, образовавших этих белых карликов), то получится минимальное значение возраста Вселенной.
Белый карлик в представлении художника
Максимальный возможный возраст определяется отсутствием менее разогретых белых карликов и составляет 15 млрд лет. Так как если бы мироздание было старше, то ученым удалось бы обнаружить хотя бы несколько настолько древних объектов.
Космологический принцип
Это понятие означает, что независимо от места и направления наблюдателя, каждый видит одну и ту же картину Вселенной. Разумеется, это не относится к исследованиям меньшего масштаба. Такая однородность пространства вызвана равноправием всех его точек. Обнаружить это явление можно лишь в масштабах скопления галактик.
Что-то, сродни этому понятию было впервые предложено сэром Исааком Ньютоном в 1687 году. И впоследствии, в 20 веке, это же было подтверждено наблюдениями других ученых. Логично, если все возникло из одной точки Большого взрыва, а затем расширилось до Вселенной, то будет оставаться довольно однородным.
Расстояние, на котором можно наблюдать за космологическим принципом, чтобы найти это очевидное равномерное распределение материи, занимает примерно 300 миллионов световых лет от Земли.
Однако все изменилось в 1973 году. Тогда была обнаружена аномалия, нарушающая космологический принцип.
Свет не всегда движется очень быстро
Но уже в воде фотоны света замедляются и движутся со скоростью порядка ¾ от максимальной. Почти на 100 000 километров в секунду медленнее. Вы могли бы пройти долгий путь за секунду, будь вы фотоном, поэтому это немалая величина. Неудивительно, что в некоторых средах другие частицы могут двигаться быстрее света. Означает ли это, что они путешествуют в будущее?
К примеру, в ядерном реакторе присутствуют частицы, которые разгоняются до чрезвычайно высоких скоростей. Если им случается проходить через изолирующую среду (например, воду для охлаждения реактора), которая замедляет свет, они обгоняют частицы света. Вследствие этого проявляется эффект излучения Черенкова, в виде голубого свечения. Реакторы светятся в темноте не потому, что они перегреваются, а потому что свет обгоняют другие частицы.
Ученым также удалось замедлить свет почти до нуля по меркам световых скоростей. Самая медленная скорость, до которой замедляли свет, составила 17 метров в секунду.